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Generalized van der Waals theory for the thermodynamic properties of square-well fluids
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A theory previously developed for the coordination number of square-well fluids is used within the context
of a generalized van der Waals theory to obtain the compressibility factor and the internal energy of these
fluids. Results are compared with computer simulations for several densities, temperatures, and potential
widths, which are also reported.
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I. INTRODUCTION wherer* =r/a, p*=po® (p=N/V is the number densily
andg(r) is the r.d.f. of the SW fluid. Note that the basis of
The square-wel{SW) potential the BH perturbation theory for a SW fluid consists in chang-
ing in Eq. (2) the r.d.f. of the SW fluid by that of the refer-
o f r<o ence hard-sphere fluid.

To determine the coordination numhég of SW fluids, a
. number of theoretical models fo¥, have been developed
0 if  r>ho, [9,10,13. However, results from these models are not, in
) ) _ ) general, accurate enough and, therefore, use is made of pa-
where o is the diameter of the particles; e the potential  gmetrizations of the simulation data.
depth, andh o the range or potential width, has been widely  |n g recent papefr14], we developed a theoretical model
used as a simple model of the potential of real fluids withfor the coordination number of SW fluids, which provides
spherically symmetric interactions. The reason is that it is thxcellent agreement with simulation data for a wide range of
simplest potential model to deal with, from a theoretical gensities, temperatures, and potential widths. In the present
viewpoint, whereas it is able to reproduce, at least in a qualipaper, we will test the performance of the model, used within
tative way, most of the properties of fluids having more re-the context of the generalized van der Waals theory, to pre-
alistic interactions, including the vapor-liquid equilibria. dict the equation of state and the internal energy of SW flu-
One of the most successful theories of liquids is thejgs.
Barker-Henderson(BH) [1] perturbation theory which is  The paper is organized as follows. Section Il summarizes
analytical for SW fluids, provided that analytical expressionsthe coordination number model. The generalized van der
for the radial distribution functiorir.d.f) [2] and the equa- \waals model is summarized in Sec. IlI. Finally, in Sec. IV,
tion of state[3] of the reference hard-sphe(dS) fluid are  Monte Carlo simulation data for SW fluids with different
available. However, this theory converges slowly for shorttemperatures, densities, and well widths are presented and

ranged SW potential4], so that it is unable to accurately then used to compare with the results obtained from the
reproduce the thermodynamic properties of SW fluids forgydw theory.

low values of\.

The Barker-Henderson perturbation theory is within the
spirit of the van der Waalé/dW) theory, which, in fact, can
be derived on the basis of a first-order perturbation theory.
van der Waals theories have experienced recébiBj a re- Several theoretically based coordination number models
naissance in the form of the so-callgeneric van der Waals for SW fluids have been derived on the basis of the qua-
equation of state. For a SW fluid this equation reduces to thgichemical approximation. Among these, we will mention

u(r)y=4 —¢& if osr<io (1)

Il. COORDINATION NUMBER MODEL FOR
SQUARE-WELL FLUIDS

form of the classical vdW one at high temperatures. here the following expression derived by Heyés]:
One of the most promising theories developed for SW
fluids, within the scope of the vdW-type theories, is the gen- zp*e’/kT
eralized van der Waal&GvdW) theory[7—13] which derives chp:‘naﬁ p* (K T—1) ©)

the thermodynamic properties of SW fluids from twordi-
nation number(which is the average number of particles

" . . - i In this expressiong?...., the maximum reduced density, is set
within the potential well. It is defined in the form P Pmax Y

to 1, very close to the value 0.9428 which corresponds to the
\ density of the hard-sphere fluids, in equilibrium with the cor-
Nc:47TP*f g(r*)r*2dr*, (2)  responding solid, whereasthe lattice coordination number,

1 is determined from the exact low density linpit-0 of the
r.d.f.g(r)=e ") in combination with Eq(2) and the low
density expansion of Ed3). This gives

* Author to whom correspondence should be addressed. Electronic
address: solanajr@unican.es z=4mw(\3-1). (4)
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With this expression forz, Eq. (3) yields the correct low i NHSee/kT
density behavior of the coordination number, but departs Ne=—% (@1 ®
markedly from simulation data at higher densitjéd]. Pmax™ P

Let us return to Eq(3). In the high temperature limit

e . )
s, it reduces to with pn.x given by Eq.(7). Note that althouglpy,,, is ex

pected to depend on density for the reasons given above, its
N limiting value p* for A—o cannot be justified only on this
N (T=00)= fi 7 (5) basis. The fact is that the lattice model which constitutes the
Pmax basis for the derivation of many coordination number mod-
els, in particular, Eq(3) and subsequently Ed8), is not
In this limit the SW fluid behaves as a hard-sphere fluid, forexact, which yields an incorrect density dependency of the
which the average numb&t's of particles, up to a reduced coordination number. This is corrected, to some extent, by
distance\ of a given particle, is given in Eq2) by taking  the density dependency pf,.,, which results from the lim-
for the r.d.f.g(r) the r.d.f. corresponding to a hard-sphereiting conditions imposed ofl...
fluid g"S(r). Therefore, we can write

Ill. GENERALIZED VAN DER WAALS THEORY

*
2(T=00) :p”f"NCHS, (6) The canonical partition function of a monatomic system is
given by

We will assume that this expression oholds at any tem-
perature. Q=—r Qe C)

On the other hand, the maximum density a HS system can
reach isp¥.,=1/2, which corresponds to thegular close  where A = (h%27mkT)?is the thermal wavelength and
packed volume y/ This is also the upper density limit for
SwW sy;tems. However, for more i_rregularly packed systems, Qc:f N f e By, ., "Wdry, ... dry (10)
other limiting values of the density of the HS system are v v
possiblg15—-17. In fact, computer simulations for the hard-
sphere fluid have showfl6] that starting from an equilib- is the configurational partition function witfg=1/kT and
rium configuration at a given density and compressing theb(r, ... y) the potential energy of the system for the
system up to the closest packing, with the system constraingulrticular configurationr(, ... ry).
to remain in the sammherent structurehroughout the pro- Once the partition function is known, the thermodynamic
cess, limiting densitiep,,, ranging from about 1.01 to properties can be obtained by means of well-known rela-
1.2389 are obtained, depending on the starting equilibriuntions. Thus, the free energy
density. The last of these two values corresponds to the so-
calledrandom close packing densiyit other higher density F=-kTInQ, 1D
packings, partially ordered, can be attaiféd] with a lim-
iting density py .= J2, corresponding to the regular close
packing of a face-centered culiicc) lattice.

A similar situation is expected to arise in SW systems, but U= kTZ(
for the fact that the close-packing density may depend on the
range\ in addition to the densitp*. To obtain some insight
into this dependency, let us consider the infinity range limit
A—o of Eq. (3), with z given by Eq.(6). In this limit, pr= alnQ
particles move in a uniform background and the potential P:_(W) = ( EY; ) (13
well has no effect on the coordination number, that is, N, T
N.(A=2)=N"5=N. From Egs.(3) and (6), this requires
that py..=p* in this limit. In the opposite limit\=1 the
width of the potential well is zero, but particles can stick to
other particles so thatl,# NES except in the limitT—o or
in the limit p* =p§m. The_: last situ_ation requires thaf; ., £ [ dINQc
=2 for A\=1. A simple interpolation opy,., between the Um=kT aT : (14)
two extreme values of yields NV

the internal energy

(12

aInQ)
aT NV,

and the pressure

N, T

The corresponding excess properties over the ideal gas
can be obtained from the configurational partition function in
a similar way. In particular, the excess internal enedyis

If the potential energy of the system is pairwise additive, and

1 the intermolecular potential is spherically symmetrical, the
* % _ _ % ’
Pma= P+ )\3(‘/5 pe)- () excess energy of the system can be expressed in the form
From Egs.(3) and(6), the expression of the coordination UE=2wNmeu(r)g(r)r2dr. (15)
number we proposedL4] is 0
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Therefore, if the r.d.f. is known, we can obtain the excess IV. RESULTS AND DISCUSSION
energyUE and, integrating Eq(14), the configuration parti-

. o We have performed Monte Carlo NVT simulations of the
tion function in the form

compressibility factor and the internal energy of SW fluids
TUE for wide ranges of densities and temperatures and several
INQ.=In QC(T:oo)-i-j WdT (16)  potential widths. The system consisted of 512 particles, ini-
o tially placed in a regular configuration in a cubic volume
with periodic boundary conditions, with fixed temperature

or and density. The system was allowed to equilibrate for 2
_ _ 1 X 10* cycles, each of them consisting of an attempted move
Fo=Fo(T=2)+2Ny, (17 per particle, with the first % 10° cycles performed at a very
where high temperature and the remaining at the desired tempera-

ture. After equilibration, the equation of state and the internal
2KT (TUE energy were determined from measurements performed over
- TJ T2 T the next 5<10* cycles. Results are reported in a separate
* electronic file[18]. They are consistent with those from other
o authors for the cases where the latter are available.
f u(r)g(r)rzdr}dT. (18 These data will be used here to compare the theoretical
0 predictions for the compressibility fact@ and the internal
_ i i energyU from Eqgs.(22) and(24), respectively, together with
If the intermolecular potent:\lalu(r) has g(spherlca] hard Egs.(7), (8), and(25). ForN'g'S we have used an analytical
core, therFC(T:w)?(Vf )T, yvhereyf IS thgfree volume _expression derived by Chang and San@®ron the basis of
of a hard sphere f.ll.“d’ SO th_at, 'QgLUd,l,ng the ideal gas CoNtrizhe percus-Yevick integral equation theory. This gives rise to
bution to the_ partition functlom VZ/N! and to the free analytical expressions & andU. For the equation of state
energy, we finally obtairig] of the HS fluid, we have used the well-known Carnahan-
Starling equatiorf3]

T1
=_4WkTpf T2

Q — QHSe— N2k T (19)

2 3

and s PPV _ 1+t n*— 7
NkT (1—9)°

(26)

F=FHS+INy. (20)
) ) where »=(7/6)p* is the packing fraction.

ergy are obtained in the usual way, with the result the equation of state, and in Fig. 2 for the excess internal
energy. From these figures, we can conclude that the theoret-

p—=pHS_ EN(a_'ﬂ> (21) ical predictions for both properties are very accurate, except

2 \oV NT perhaps for very short ranges and very low temperatures. Itis

to be noted that all temperatures studied are supercritical.
or Probably for subcritical temperatures the accuracy of the
theory would be worse.
In the same figures we have included the results obtained
ENV; ' (22 using expressiofB) for N, with z given by Eq.(4), instead
N.T of our expression8). It is clear from these figures that our
expression provides a remarkable improvement over(8g.
especially for low values ok and high densities.
&(l///kT)} We could think that using a more accurate expression for
N

and

U= gNkT+ UE=gNkT— %N sz[ pr the r.d.f. of the HS fluid than that obtained from the Percus-
Yevick theory, such as those derived in Ref$9-21], to
23 optain NHS . would improve the results. However, we have
found that this results in an increased complexity in the cal-
culations, without any significant difference in the results.
Therefore, expressiof8) itself needs to be improved, espe-
N N cially for subcritical temperatures, in order to obtain more
UE= —quNpsf g(r)r2dr=-— —&N, (24) accurate results for the thermodynamic properties.
o 2 It is to be noted that expressid@8) is not appropriate for

the limiting case of sticky hard spheres. Even if the Percus-

For the particular case of a fluid of particles interacting by
means of a SW potential of the forft),

and Yevick theory, used to determindlf, is not accurate
N enough at short distances and high densities. Certainly, Eqg.
= kTsf —Csz. (25) (8) yields the right low density behavior for sticky hard
» KT spheres, as it leads to the right second virial coefficient when

066112-3



J. LARGO AND J. R. SOLANA PHYSICAL REVIEW E57, 066112 (2003

-UE/Ne
-UENe

- Ume
-UE/Ne

“UE/Ne
-USNe

-UEmNe
“UFNE
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o FIG. 2. Excess internal energyUE/Ne for square-well fluids
FIG. 1. Compressibility factoZ = PV/NKT for square-well flu- < - ¢ nction of the reduced density = po3 and reduced tempera-
ids as a function of the rgduced density=po? and reduced tem- ture T* =kT/ e for different values ofv. Curves: Eq(24), with N
peratureT* = kT/e, for dnfferent vglues of\. Curves: Eq.(22) given by Eq.(8) (continuous curvesor N, given by Eq.(3) (dotted
together with _Eq.(25), with Ne given by Eg. (_8) (co_ntmuo_us curves. Points have the same meaning as in Fig. 1. For clarity, the
curves or N given by Eq.(3) (dotted curvep Points: simulation curves for each temperature, and the simulation data, have been

data from Ref.[18]. Filled symbols: T*=0.5 (diamond$, T* shifted upwards by an amount of 1 wi : .
4 ’ with respect to that immediatel
=0.7 (triangles, T* =1.0 (squarep and T* =1.5 (circles. Open below. P 4 P ! ey

symbols: T*=2.0 (triangleg, T*=3.0 (squares and T*=5.0
(circles.
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