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Generalized van der Waals theory for the thermodynamic properties of square-well fluids
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A theory previously developed for the coordination number of square-well fluids is used within the context
of a generalized van der Waals theory to obtain the compressibility factor and the internal energy of these
fluids. Results are compared with computer simulations for several densities, temperatures, and potential
widths, which are also reported.
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I. INTRODUCTION

The square-well~SW! potential

u~r !5H ` if r ,s

2« if s<r<ls

0 if r .ls,

~1!

where s is the diameter of the particles,2e the potential
depth, andls the range or potential width, has been wide
used as a simple model of the potential of real fluids w
spherically symmetric interactions. The reason is that it is
simplest potential model to deal with, from a theoretic
viewpoint, whereas it is able to reproduce, at least in a qu
tative way, most of the properties of fluids having more
alistic interactions, including the vapor-liquid equilibria.

One of the most successful theories of liquids is
Barker-Henderson~BH! @1# perturbation theory which is
analytical for SW fluids, provided that analytical expressio
for the radial distribution function~r.d.f.! @2# and the equa-
tion of state@3# of the reference hard-sphere~HS! fluid are
available. However, this theory converges slowly for sho
ranged SW potentials@4#, so that it is unable to accuratel
reproduce the thermodynamic properties of SW fluids
low values ofl.

The Barker-Henderson perturbation theory is within t
spirit of the van der Waals~vdW! theory, which, in fact, can
be derived on the basis of a first-order perturbation the
van der Waals theories have experienced recently@5,6# a re-
naissance in the form of the so-calledgeneric van der Waals
equation of state. For a SW fluid this equation reduces to
form of the classical vdW one at high temperatures.

One of the most promising theories developed for S
fluids, within the scope of the vdW-type theories, is the g
eralized van der Waals~GvdW! theory@7–13# which derives
the thermodynamic properties of SW fluids from thecoordi-
nation number~which is the average number of particle
within the potential well!. It is defined in the form

Nc54pr* E
1

l

g~r * !r * 2dr* , ~2!
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wherer * 5r /s, r* 5rs3 (r5N/V is the number density!,
andg(r ) is the r.d.f. of the SW fluid. Note that the basis
the BH perturbation theory for a SW fluid consists in chan
ing in Eq. ~2! the r.d.f. of the SW fluid by that of the refer
ence hard-sphere fluid.

To determine the coordination numberNc of SW fluids, a
number of theoretical models forNc have been develope
@9,10,13#. However, results from these models are not,
general, accurate enough and, therefore, use is made o
rametrizations of the simulation data.

In a recent paper@14#, we developed a theoretical mod
for the coordination number of SW fluids, which provide
excellent agreement with simulation data for a wide range
densities, temperatures, and potential widths. In the pre
paper, we will test the performance of the model, used wit
the context of the generalized van der Waals theory, to p
dict the equation of state and the internal energy of SW
ids.

The paper is organized as follows. Section II summari
the coordination number model. The generalized van
Waals model is summarized in Sec. III. Finally, in Sec. I
Monte Carlo simulation data for SW fluids with differen
temperatures, densities, and well widths are presented
then used to compare with the results obtained from
GvdW theory.

II. COORDINATION NUMBER MODEL FOR
SQUARE-WELL FLUIDS

Several theoretically based coordination number mod
for SW fluids have been derived on the basis of the q
sichemical approximation. Among these, we will menti
here the following expression derived by Heyes@13#:

Nc5
zr* e«/kT

rmax* 1r* ~e«/kT21!
. ~3!

In this expression,rmax* , the maximum reduced density, is s
to 1, very close to the value 0.9428 which corresponds to
density of the hard-sphere fluids, in equilibrium with the co
responding solid, whereasz, the lattice coordination number
is determined from the exact low density limitr→0 of the
r.d.f. g(r )5e2bu(r ) in combination with Eq.~2! and the low
density expansion of Eq.~3!. This gives

z5 4
3 p~l321!. ~4!
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With this expression forz, Eq. ~3! yields the correct low
density behavior of the coordination number, but depa
markedly from simulation data at higher densities@14#.

Let us return to Eq.~3!. In the high temperature limitT
→`, it reduces to

Nc~T5`!5
r*

rmax*
z. ~5!

In this limit the SW fluid behaves as a hard-sphere fluid,
which the average numberNc

HS of particles, up to a reduce
distancel of a given particle, is given in Eq.~2! by taking
for the r.d.f. g(r ) the r.d.f. corresponding to a hard-sphe
fluid gHS(r ). Therefore, we can write

z~T5`!5
rmax*

r*
Nc

HS . ~6!

We will assume that this expression ofz holds at any tem-
perature.

On the other hand, the maximum density a HS system
reach isrmax* 5A2, which corresponds to theregular close
packed volume V0. This is also the upper density limit fo
SW systems. However, for more irregularly packed syste
other limiting values of the density of the HS system a
possible@15–17#. In fact, computer simulations for the hard
sphere fluid have shown@16# that starting from an equilib-
rium configuration at a given density and compressing
system up to the closest packing, with the system constra
to remain in the sameinherent structurethroughout the pro-
cess, limiting densitiesrmax* ranging from about 1.01 to
1.2389 are obtained, depending on the starting equilibr
density. The last of these two values corresponds to the
calledrandom close packing densitybut other higher density
packings, partially ordered, can be attained@17# with a lim-
iting density rmax* 5A2, corresponding to the regular clos
packing of a face-centered cubic~fcc! lattice.

A similar situation is expected to arise in SW systems,
for the fact that the close-packing density may depend on
rangel in addition to the densityr* . To obtain some insigh
into this dependency, let us consider the infinity range lim
l→` of Eq. ~3!, with z given by Eq. ~6!. In this limit,
particles move in a uniform background and the poten
well has no effect on the coordination number, that
Nc(l5`)5Nc

HS5N. From Eqs.~3! and ~6!, this requires
that rmax* 5r* in this limit. In the opposite limitl51 the
width of the potential well is zero, but particles can stick
other particles so thatNcÞNc

HS except in the limitT→` or
in the limit r* 5rmax* . The last situation requires thatrmax*
5A2 for l51. A simple interpolation ofrmax* between the
two extreme values ofl yields

rmax* 5r* 1
1

l3 ~A22r* !. ~7!

From Eqs.~3! and~6!, the expression of the coordinatio
number we proposed@14# is
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Nc5
rmax* Nc

HSe«/kT

rmax* 1r* (e«/kT21)
, ~8!

with rmax* given by Eq.~7!. Note that althoughrmax* is ex-
pected to depend on density for the reasons given above
limiting value r* for l→` cannot be justified only on this
basis. The fact is that the lattice model which constitutes
basis for the derivation of many coordination number mo
els, in particular, Eq.~3! and subsequently Eq.~8!, is not
exact, which yields an incorrect density dependency of
coordination number. This is corrected, to some extent,
the density dependency ofrmax* , which results from the lim-
iting conditions imposed onNc .

III. GENERALIZED VAN DER WAALS THEORY

The canonical partition function of a monatomic system
given by

Q5
L23N

N!
Qc , ~9!

whereL5(h2/2pmkT)1/2 is the thermal wavelength and

Qc5E
V
•••E

V
e2bF(r1 , . . . ,rN)dr1 , . . . ,drN ~10!

is the configurational partition function withb51/kT and
F(r1 , . . . ,rN) the potential energy of the system for th
particular configuration (r1 , . . . ,rN).

Once the partition function is known, the thermodynam
properties can be obtained by means of well-known re
tions. Thus, the free energy

F52kT ln Q, ~11!

the internal energy

U5kT2S ] ln Q

]T D
N,V

, ~12!

and the pressure

P52S ]F

]VD
N,T

5kTS ] ln Q

]V D
N,T

. ~13!

The corresponding excess properties over the ideal
can be obtained from the configurational partition function
a similar way. In particular, the excess internal energyUE is

UE5kT2S ] ln Qc

]T D
N,V

. ~14!

If the potential energy of the system is pairwise additive, a
the intermolecular potential is spherically symmetrical, t
excess energy of the system can be expressed in the fo

UE52pNrE
0

`

u~r !g~r !r 2dr. ~15!
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Therefore, if the r.d.f. is known, we can obtain the exce
energyUE and, integrating Eq.~14!, the configuration parti-
tion function in the form

ln Qc5 ln Qc~T5`!1 ÈT UE

kT2 dT ~16!

or

Fc5Fc~T5`!1 1
2 Nc, ~17!

where

c52
2kT

N ÈT UE

kT2dT

524pkTr ÈT 1

kT2 F E
0

`

u~r !g~r !r 2drGdT. ~18!

If the intermolecular potentialu(r ) has a~spherical! hard
core, thenFc(T5`)5(Vf /V)N, whereVf is thefree volume
of a hard sphere fluid, so that, including the ideal gas con
bution to the partition functionL23NVN/N! and to the free
energy, we finally obtain@8#

Q5QHSe2Nc/2kT ~19!

and

F5FHS1 1
2 Nc. ~20!

From these expressions, the pressure and the interna
ergy are obtained in the usual way, with the result

P5PHS2
1

2
NS ]c

]VD
N,T

~21!

or

Z5ZHS2
1

2

V

kT S ]c

]VD
N,T

, ~22!

and

U5
3

2
NkT1UE5

3

2
NkT2

1

2
NkT2F]~c/kT!

]T G
N,V

.

~23!

For the particular case of a fluid of particles interacting
means of a SW potential of the form~1!,

UE522pNr«E
s

ls

g~r !r 2dr52
N

2
«Nc ~24!

and

c5kT« ÈT Nc

kT2 dT. ~25!
06611
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IV. RESULTS AND DISCUSSION

We have performed Monte Carlo NVT simulations of th
compressibility factor and the internal energy of SW flui
for wide ranges of densities and temperatures and sev
potential widths. The system consisted of 512 particles,
tially placed in a regular configuration in a cubic volum
with periodic boundary conditions, with fixed temperatu
and density. The system was allowed to equilibrate for
3104 cycles, each of them consisting of an attempted mo
per particle, with the first 43103 cycles performed at a very
high temperature and the remaining at the desired temp
ture. After equilibration, the equation of state and the inter
energy were determined from measurements performed
the next 53104 cycles. Results are reported in a separ
electronic file@18#. They are consistent with those from oth
authors for the cases where the latter are available.

These data will be used here to compare the theore
predictions for the compressibility factorZ and the internal
energyU from Eqs.~22! and~24!, respectively, together with
Eqs.~7!, ~8!, and~25!. For Nc

HS we have used an analytica
expression derived by Chang and Sandler@2# on the basis of
the Percus-Yevick integral equation theory. This gives rise
analytical expressions ofZ andU. For the equation of state
of the HS fluid, we have used the well-known Carnaha
Starling equation@3#

ZHS5
PHSV

NkT
5

11h1h22h3

~12h!3 , ~26!

whereh5(p/6)r* is the packing fraction.
Results are shown, for several values ofl, in Fig. 1 for

the equation of state, and in Fig. 2 for the excess inter
energy. From these figures, we can conclude that the the
ical predictions for both properties are very accurate, exc
perhaps for very short ranges and very low temperatures.
to be noted that all temperatures studied are supercrit
Probably for subcritical temperatures the accuracy of
theory would be worse.

In the same figures we have included the results obtai
using expression~3! for Nc , with z given by Eq.~4!, instead
of our expression~8!. It is clear from these figures that ou
expression provides a remarkable improvement over Eq.~3!,
especially for low values ofl and high densities.

We could think that using a more accurate expression
the r.d.f. of the HS fluid than that obtained from the Perc
Yevick theory, such as those derived in Refs.@19–21#, to
obtain Nc

HS , would improve the results. However, we hav
found that this results in an increased complexity in the c
culations, without any significant difference in the resul
Therefore, expression~8! itself needs to be improved, espe
cially for subcritical temperatures, in order to obtain mo
accurate results for the thermodynamic properties.

It is to be noted that expression~8! is not appropriate for
the limiting case of sticky hard spheres. Even if the Perc
Yevick theory, used to determineNc

HS , is not accurate
enough at short distances and high densities. Certainly,
~8! yields the right low density behavior for sticky har
spheres, as it leads to the right second virial coefficient w
2-3
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used in combination with Eq.~22!. However, a detailed
analysis of the performance of Eq.~8! for sticky hard spheres
at moderate to high densities is beyond the scope of
present paper.

FIG. 1. Compressibility factorZ5PV/NkT for square-well flu-
ids as a function of the reduced densityr* 5rs3 and reduced tem-
peratureT* 5kT/e, for different values ofl. Curves: Eq.~22!
together with Eq.~25!, with Nc given by Eq. ~8! ~continuous
curves! or Nc given by Eq.~3! ~dotted curves!. Points: simulation
data from Ref. @18#. Filled symbols: T* 50.5 ~diamonds!, T*
50.7 ~triangles!, T* 51.0 ~squares!, and T* 51.5 ~circles!. Open
symbols: T* 52.0 ~triangles!, T* 53.0 ~squares!, and T* 55.0
~circles!.
06611
e
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FIG. 2. Excess internal energy2UE/Ne for square-well fluids
as a function of the reduced densityr* 5rs3 and reduced tempera
ture T* 5kT/e for different values ofl. Curves: Eq.~24!, with Nc

given by Eq.~8! ~continuous curves! or Nc given by Eq.~3! ~dotted
curves!. Points have the same meaning as in Fig. 1. For clarity,
curves for each temperature, and the simulation data, have
shifted upwards by an amount of 1 with respect to that immedia
below.
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